Asymmetric Synthesis of (3R,

 5R)-3-((tert-Butyldimethylsily)oxy)-5-((Z)-2-Bromovinyl)-Tetrahydro-Furan-2-one, an Intermediate for the Synthesis of FostriecinSu Yun LIU, Dao Fei HUANG, Hai Hong HUANG, Liang HUANG*
Institute of Materia Medica, Chinese Academy of Medical Science \& Peking Union Medical College, Beijing 100050

Abstract

R,5R)-3-((tert-Butyldimethylsily)oxy)-5-((Z)-2-bromovinyl)-tetrahydro-furan-2-one, an intermediate for the synthesis of Fostriecin was achieved by intramolecular asymmetric induction in propene addition of (-)-8-phenylmenthyl glyoxylate followed by inversion of C_{3}-hydroxyl group and Sharpless asymmetric dihydroxylation with simultaneous cyclization to give lactone 5 . Then protection of C_{3}-hydroxyl group and oxidation of the C_{6}-primary hydroxyl group which reacted with Wittig reagent to yield the target compound 4.

Keywords: Fostriecin, dihydroxylation, (-)-8-phenylmenthol asymmetric synthesis.
Fostriecin(CI-920) $\mathbf{1}^{1}$ a potential anticancer agent presently in phase I clinical trials at NCI is a novel phosphate ester produced by Streptomyces pulveraceus.

Scheme 1

Synthesis of C_{10} epimer of compound $\mathbf{1}$ had been reported by Just G^{2}. during the determination of its structure. On the basis of Just's synthesis, a revised retro-asymmetric synthetic route of Fostriecin (scheme 1) was designed here of which compound $\mathbf{3}$ was synthesized from 5 with C_{3} in R configuration corresponding to C_{10} of $\mathbf{1}$ instead of glucofuranose derivative used for its epimer by Just. The synthestic routes of compound 4 were listed in scheme 2 and scheme 3. Compound 10 was prepared from 6 by the
procedures detailed by Whitesell ${ }^{3}$. The yields and ${ }^{1} \mathrm{HNMR}$ data of these compounds ($\mathbf{6}, \mathbf{7}$, 8 and 9) checked nicely with what have been reported except the $\left[{ }^{a}\right]_{D}$ and ${ }^{1} H N M R$ of $\mathbf{1 0}^{8 \mathrm{a}}$ which had not been mentioned in the original paper. The $\mathrm{C}_{2}-\mathrm{OH}$ of compound $\mathbf{1 0}$ was protected and followed by asymmetric dihydroxylation of compound $\mathbf{1 1}$ with AD-mix- β^{4} to give the compound $\mathbf{1 2}$ as a yellowish oil (Scheme 2). Cyclization of $\mathbf{1 2}$ failed

Scheme 2

Regents and conditions: (a) $\mathrm{BrCH}_{2} \mathrm{COOH} / \mathrm{p}$-Toluenesulfonic acid/benzene, 97%; (b) $\mathrm{AgNO}_{3} / \mathrm{CH}_{3} \mathrm{CN}$, 93%; (c) $\mathrm{DMSO} / \mathrm{NaOAc}, 93 \%$; (d) propene $/ \mathrm{SnCl}_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 98 \%$; (e) tert-Butyldimethylsilyl chloride/imidazole/DMF, 96%; (f) AD-mix- $\beta / \mathrm{H}_{2} \mathrm{O}$, tert-BuOH, $0^{\circ} \mathrm{C}, 86 \%$.
possibly due to the steric effect of 8-phenylmenthol. Attempt to cyclize of the free acid was not satisfactory. Therefore the menthyl group was replaced by less bulky p-nitrobenzyl group and which has strong fluorescence, easy to monitor the reaction by TLC. The 8 -phenylmenthyl group of compound $\mathbf{1 0}$ was removed with 5% sodium hydroxide as shown in scheme 3 and the sodium salt was treated directly with p-nitrobenzyl bromide. Ester $\mathbf{1 4}$ was an oil ($[\alpha]_{D}^{19}-18.13$ (c $2.46 \mathrm{CHCl}_{3}$)) which failed to crystallize on standing. Inversion of C_{2} configuration from the undesired " S " to " R " was achieved through Mitsunobu reaction ${ }^{5}$ followed by treatment of the intermediate $\mathbf{1 5}$ with thiourea to give compound $16\left([a]_{D}^{20}+18.09\right.$ (c $\left.2.86 \mathrm{CHCl}_{3}\right)$). Protection of hydroxy group with tert-butyldimethylsilyl group and asymmetric dihydroxylation with AD-mix- β gave directly the cyclized furanone $\mathbf{1 8}$ (m.p. $66.7 \sim 68.1^{\circ} \mathrm{C}$) with strong peaks at $1770 \mathrm{~cm}^{-1}$ in IR. After Swern oxidation ${ }^{6}$ of 18, the aldehyde was treated with the bromomethyl ylide ${ }^{7}$. The bromoethenyl furanone 4 was obtained as a white solid (m.p.53.3~55.5 ${ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR} \delta, 6.41\left(\mathrm{~d}, \mathrm{~J} 7.2 \mathrm{~Hz}, \mathrm{C}_{1} \cdot \mathrm{H}\right.$), $6.30\left(\mathrm{t}, \mathrm{J} 7.2, \mathrm{C}_{2},-\mathrm{H}\right.$)) in 51%

5R)-3-((tert-Butyldimethylsily)oxy)-5-((Z)-2-Bromovinyl)-Tetrahydro-Furan-2-one

 yield ${ }^{8}$.Scheme 3

Regents and conditions: g) $5 \% \mathrm{NaOH}$, h) p-Nitrobenzylbromide/DMF, 70%; i) $\mathrm{ClCH}_{2} \mathrm{COOH} / \mathrm{TPP} / \mathrm{DEAD} /$ Toluene, 90%; j) Thiourea/EtOH, 89%; k) tert-Butyldimethylsilyl chloride/imidazole/DMF, 96%; l) AD-mix- $\beta / \mathrm{H}_{2} \mathrm{O}, \mathrm{t}-\mathrm{BuOH}, 0^{\circ} \mathrm{C}, 79 \%$; m) Oxalyl chloride/Et $\mathrm{t}_{3} \mathrm{~N} / \mathrm{DMSO}$, $\left.-78^{\circ} \mathrm{C} ; \mathrm{n}\right) \mathrm{Ph}_{3} \mathrm{P}^{+}=\mathrm{CHBr} . \mathrm{Br} / \mathrm{t}-\mathrm{BuOK} / \mathrm{THF},-78^{\circ} \mathrm{C}, 51 \%$
${ }^{1} \mathrm{H}$-NMR, ${ }^{13} \mathrm{C}$-NMR EI-MS and IR data of compound 10, 12, 14, 15, 16, 18 and 4 were listed in note 8 . The synthesis of Fostriecin (CI-920) is on going.

Acknowledgment

The authors were indebted to Professor Li Ya Zhu for her help in preparing the paper.

References and notes

1. D. L. Boger, M. Hikota , B. M. Lewis, J. Org. Chem. 1997, $62,1748$.
2. G. Just, B. O’Connor, Tetrahetron Lett. 1988, 29(7), 753.
3. J. K. Whitesell, A. Bhattacharga, C. M. Buchanan, H. H. Chen, Tetrahedron 1986, 42(11), 2993.
4. H. C. Kolb, M. S. Van Nieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483.
5. a). O. Mitsunobu, Synthesis, 1981, 1.
b). M. Saiah, M. Bessodes, K. Antonakis, Tetrahedron Lett. 1992, 33(30), 4317.
6. A. J. Mancuso, D. Swern, Synthesis, 1981, 165.
7. M. Matsumoto, K. Kurada, Tetrahedron Lett., 1980, 21, 4021.
8. a). Compound 10: colorless oil, [$\left.{ }^{a}\right]_{D}^{12}+2.2$ (c 2.14, $\mathrm{CH}_{3} \mathrm{OH}$); $\mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} 300 \mathrm{MHz}\right)$ δ
ppm: $7.27(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{~m}, 1 \mathrm{H}), 5.61(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{dt}, \mathrm{J} 10.5 \mathrm{~Hz}, 4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J} 6 . .3 \mathrm{~Hz}$, 3H), 1.99~0.90 (m, 8H); EI-MS: m/z 330 (M^{+}) 119 (100\%) 105 (30\%) 91 (24%).
b). Compound 12: yellowish oil, ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} 300 \mathrm{MHz}\right) \delta \mathrm{ppm}: 7.29 \sim 7.13(\mathrm{~m} \mathrm{5H}), 4.75$ $(\mathrm{m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 0.92$ $(\mathrm{s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J} 6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 2.0 \sim 0.8(\mathrm{~m}, 8 \mathrm{H})$.
c). Compound 14: yellowish oil [$\left.{ }^{\alpha}\right]_{D}^{19}-18.13\left(c 2.46 \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} 300 \mathrm{MHz}\right)$
$\delta \mathrm{ppm}: 8.24$ (d, J $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.52(\mathrm{~d}, \mathrm{~J} 8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~m}, 2 \mathrm{H})$, 4.36 (dd, J $7.0 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H})$.
d). Compound 15: yellowish oil [$\left.{ }^{a}\right]_{D}^{21}+9.83\left(c 1.76 \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} 300 \mathrm{MHz}\right)$ $\delta \mathrm{ppm}: 8.25(\mathrm{~d}, \mathrm{~J} 8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J} 8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H})$, $5.12(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 2.68(\mathrm{~m}, 2 \mathrm{H})$.
e). Compound 16: yellowish oil; [$\alpha]_{D}^{20}+18.09\left(\mathrm{c} 2.86 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} 300 \mathrm{MHz}\right) \delta$ ppm: $8.24(\mathrm{~d}, \mathrm{~J} 8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J} 8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~m}, 2 \mathrm{H}), 4.36$ $(\mathrm{t}, \mathrm{J} 5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H})$.
f). Compound 18: colorless crystals, m.p. $66.7 \sim 68.1^{\circ} \mathrm{C}(\mathrm{EtOAc}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} 500 \mathrm{MHz}\right) \delta$ ppm: $4.52(\mathrm{t}, \mathrm{J} 9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{dd}, \mathrm{J} 2.6 \mathrm{~Hz}, 12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, \mathrm{J} 5.3 \mathrm{~Hz}$, $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}) .1 .85(\mathrm{~s}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 1 \mathrm{H}), 0.18(\mathrm{~s}, 1 \mathrm{H}), 0.15(\mathrm{~s}, 1 \mathrm{H})$; IR $v\left(\mathrm{KBr} \mathrm{cm}^{-1}\right) 3446,2953,2927,2858,1779,1334,1273,1265,1212,1165,1092,1019,963$, 890, 845, 780, 723, 613.
g). Compound 4: yellowish crystals, m.p.53.3~55.5 ${ }^{\circ} \mathrm{C}(\mathrm{EtOAc}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} 300 \mathrm{MHz}\right) \delta$ ppm: $6.41(\mathrm{~d}, \mathrm{~J} 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.3(\mathrm{t}, \mathrm{J} 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{~m}, 1 \mathrm{H})$, $2.00(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.15,(\mathrm{~s}, 3 \mathrm{H}), \mathbb{R} v\left(\mathrm{KBr} \mathrm{cm}^{-1}\right): 3080,2958,2927$, 2856, 1770, 1630, 1470, 1361, 1326, 1292, 1252, 1205, 1158, 1068, 996, 864, 839, 779, 731, 687, 623.

Received 8 May 2000

